Addicted to outrage: For the love of the bandwagon

In our society, we are addicted to outrage and jumping on the latest bandwagon. This is a bad way to go about things, and maybe even dangerous. I want to share a particularly great example that occurred through a conversation I had recently on Facebook with some random people on a post made by Adam Bandt, Australian Federal Government Greens member for Melbourne. He was talking about a proposed coal mine in Queensland, Australia, which the Australian resources minister Matt Canavan had said would be a net positive for the environment. Queue outrage.

Bandter with Adam Bandt’s supporters

I decided to simply screenshot the conversation without removing names as it was and is entirely public on Facebook anyway.

What happened here exactly? If you made it through all of the comments, I’m impressed. I read the linked article and another about the issue, and resources minister was making some plausible arguments for how this mine could be a net positive for the environment. Sure, it might have been better to have renewable energy or gas instead, but if what we’re comparing is a world without this mine and a world with this mine, Mr Canavan’s argument might hold. Here is how:

“…using high-quality coal to displace lower-quality coal”

I know nothing about this mine, but if it were true that the coal was higher quality (releasing less emissions per unit energy produced) than the average existing coal, and the production of this coal meant lower quality coal was not produced, the claim might be true. There are several other minor arguments, such as:

““They will do things that will improve the environment here in central Queensland and they’ll protect an additional 31,000 hectares for the black-throated finch,” Canavan said.”

And:

““They will limit the drawdown on the springs in the area and also return water to the Great Artesian basin – around 730 megalitres a year.”

So basically Adam Bandt and his followers seem to be arguing that these claims are baseless. Fair enough, maybe they are. So I asked Adam Bandt if he did indeed have evidence that these claims were baseless.

“This seems plausible, does it not? Adam Bandt are you saying that you have evidence that this statement is false?”

No response from Adam, but his supporters were pretty upset. E.g.

“Have you got shares in the coal industry or are just stupid as Canavan” [sic]

“Michael you really are naive if you think what they said will actually happen. Look at history of Adani and their broken promises…get the facts from many sources before you slavishly believe one source.”

This one was particularly amusing because I’m actually questioning the source (Adam Bandt) unlike them. There was also one nice chap who asked me whether my (PhD) supervisor knew what I was saying here, but he has since deleted his comment.

It’s becoming increasingly apparent that we are addicted to being outraged at certain things without much evidence about the specifics. This seems like a pretty bad heuristic. If you have read any of my work relating to effective altruism, you would know that even strange ideas can lead to great outcomes, and great ideas can lead to negative effects. I wouldn’t fall off my chair if something that sounded environmentally damaging on the outset turned out to increase wellbeing.

Best of all, I never said I supported the project, I was just not jumping on the bandwagon. This was taken to be a full, unwavering support of the project. As I said in the post:

“These things are always more complicated than people want them to be. For the record, I think the project shouldn’t go ahead. It is amusing to me that people here have assumed that I am in favour of the project, as I never said anything of the sort.

What kind of sad world we live in where merely thinking through the consequences of actions instead of jumping on the bandwagon is seen as a bad thing.”

Along a slightly different theme, but no less ‘bandwagony’, is this example. This was posted in a closed group called Friendly Vegans in Melbourne, so you might not be able to see it. As a result, I have hidden the identities of the original poster and commenters.

Some friendly vegans

 

I really don’t have much to add here. But once again, refusing to jump on the bandwagon makes people think less of you. Go figure.

I will just say that this should in no way cause you to be against veganism, simply because some friendly vegans celebrate human suffering in specific circumstances.

Blog – USA, Trump and CEO no more

Hey readers! Since I’m heading to USA for 1 year for my research (more on that later!) I’m trialing a different theme. I want to mix my essay/research-like posts with general updates, observations and thoughts about my travels and life that I find interesting. Bear with me and please do let me know of any aspects you like or dislike.


I’m pretty lucky in that I have a fair bit of flexibility in my PhD research, and I spend time thinking about things like asteroid impact risk and the implications of space colonisation. My main focus, however, is on understanding the geomechanical properties of asteroids and other planetary bodies, and developing geophysical techniques to do so. So far this has involved a lot of literature review, and a bit of lab work.

My opportunity to work in USA for one year initially came up in late 2015, a few months before I started my PhD. I was at the 2nd Off-Earth Mining Forum at the University of New South Wales chatting with my future supervisor, when he introduced me to an American.

Michael, this is Rene. Rene is the deputy director of the Jet Propulsion Laboratory. Oh, I have to go, bye!

Suddenly I was standing there sweating in front of a senior figure of JPL, which is the CalTech-run arm of NASA.

So Michael, tell me about your research.” He seemed oblivious to my nerves.

Well I’m starting my PhD next year and will be looking at asteroid structure for mining and asteroid mitigation purposes.

That’s great! We have some people at JPL working on that sort of thing. You should come and visit at some point.

Oh, that sounds like a good idea, I’ll be there.” Inside me was freaking out. Visit NASA? Outside me was somehow cool as a cucumber.

Many months later I got a co-supervisor who worked at JPL, and eventually that lead to their offer to spend up to 12 months there and use their equipment, including a parabolic jet. Don’t tell NASA I hate flying…

I was set to arrive in USA on the 19th of March, when my co-supervisor at JPL broke the bad news. “Because of the new administration, your visa might be delayed for up to 3 weeks from now. There have been some changes.”

Call it hyperbole, but in a roundabout sort of way, Trump may have delayed my trip (*shakes fist*). But in under a month, I’ll be living in sunny Pasadena, California, in the north of Los Angeles.

I’m also stepping down as CEO of Effective Altruism Australia, a position I’ve held since August 2016. I want to talk a little bit more about my experience and what I’ve learned, but I’ll cover that in a later post, stay tuned.

Xenon and lunar mining – Off-Earth Mining Forum Day 2

I woke up to the very strange sight of sunlight for perhaps the first time since I got to Sydney. With the Future Mining Conference over, all of the talks today were focussed specifically on space.

The first presentation was a review of lunar resources by researcher Ian Crawford, a summary of his paper published in Progress in Physical Geography. With only one or two exceptions, Ian claims, there are no resources on the Moon that would be worth importing back to Earth. The real market would be to use lunar materials on the lunar surface itself, or to use them in cis-lunar space.

Helium-3, touted by many as the solution to all of our energy woes (and the subject of the sci-fi novel by the name of Limit, which I highly recommend despite its 1000+ page length!), is implanted into the lunar regolith by solar wind. But, it only exists at an average concentration of 4 ppb in the regolith. As such, Ian is very sceptical about the economic feasibility of extracting and returning He-3 to Earth. If you’ll allow me to paraphrase him:

Assuming equal efficiencies, in 1.4 years, the same solar energy falls on 1 metre squared as would be obtained from extracting and processing all the helium-3 contained in the 3 m of high titanium regolith below it.” A rather damning statement.

Some areas of rare Earth elements (REEs) such as uranium and thorium are enriched in some areas, but REEs, despite their name, are not actually that rare, and are certainly not rare or valuable enough to warrant returning to Earth – UNLESS Earth-side supply dropped (e.g. it became too environmentally unfriendly to extract).

A large economy in cis-lunar space (e.g. science, infrastructure, transport, tourism…) may tip the economics over the edge to make lunar exploration and exploitation viable. Note that it takes much less energy to get to Moon escape velocity and down to geosynchronous Earth orbit (GEO) than it does to get to GEO from Earth’s surface. If Moon infrastructure were sufficiently developed, it could become far more cost efficient to build infrastructure in GEO using Moon resources.

This was followed up by Jim Keravala, Chief Operating Officer of Shackleton Energy, who gave us some idea of the infrastructure that might be built in GEO. Shackleton proposes that solar panels, which are much more efficient at collecting energy in space than on Earth, could be built and used to transmit wireless power back to a receiver on Earth’s surface. The energy is non-ionising and thus not a danger to life. This technology is feasible and demonstrated (for example), and can achieve energy transmission efficiencies of around 54%.

Kyle Acierno of iSpace, who are chasing the Google Lunar XPRIZE, gave a quick summary of their progress. The first prize of $20 million goes to the first non-government group to land a rover on the Moon, have it drive 500 metres and broadcast high definition video feed back to Earth. iSpace has developed a small, lightweight rover weighing just 4 kg (compared to the Curiosity Mars rover weighing in at around 900 kg!) to do just this. It is able to be so light because it is purpose built specifically for the prize goals, and contains no science equipment, and it uses 4 wheels instead of the standard 6 for rovers.

Winning the prize is the first step in a long-term plan to spend a swarm of lightweight, cheap rovers to the lunar surface to explore and demonstrate technology, eventually leading to resource extraction and the selling of scientific data. For information about their team and rover click here.

A schematic of the iSpace rover.
A schematic of the iSpace rover. Apologies for the low res… time for a new camera?

My favourite quote of the day was actually outside a presentation, and consisted of someone loudly exclaiming “No there is NOT more xenon than oxygen in the atmosphere!”

I found out today that the talks were actually live streamed, and you can find some of them here.

I immensely enjoyed the conference – it was a great chance to learn what is happening in the space resource utilisation industry and to meet and collaborate with fellow researchers. For anyone working in this space, or even just interested, I strongly recommend going to the next one in 2017.

Until next time (hopefully before 2017).

Space dust and ethics – Future Mining Conference day 2

Today started at the much more relaxed 8:45 am – not because the conference organisers felt like that was a more appropriate time, but because our Minister for Industry, Innovation and Science decided he couldn’t make it. Or something. I felt doubly snubbed as Pyne is my local MP AND a graduate of my school. C’mon Chris.

There were a lot of great talks today, (and definitely more of a space theme) so I’ll just summarise some of my favourites.

The morning started off with a presentation by Rene Fradet, Deputy Director of NASA Jet Propulsion Laboratory (JPL), on the potential for a common journey between exploration/science and mining in space. My supervisor introduced me to Rene over lunch and we were able to broach the possibility of visiting JPL in California (or even spending some time researching there!?) and collaborating with their scientists, some of whom are also working on mapping the interior of asteroids with geophysics.

Dr Seher Ata from UNSW spoke about ‘Resource recovery in space’, or more specifically, how to process and separate materials in space. If we want to to mine and then utilise material in space without having to bring it down to Earth, we’ll need to develop ways to process and separate materials in a microgravity environment. Many terrestrial separation methods such as froth flotation and magnetic separation rely on gravity. For example, using magnets to separate out magnetic material is only worthwhile if everything else is being pulled away by gravity, and bubbles won’t rise in a liquid, which makes froth flotation difficult to impossible. One audience member suggested centripetal force, but as you add more moving parts you increase the chances of something going wrong. I wondered aloud why we couldn’t utilise that lovely vacuum we have around us in space to induce some kind of air flow/movement and use that instead of gravity. Apparently that wasn’t actually too bad an idea, and I was told to look into it. Geez, I’m just a geophysicist! Let me know if you are a metallurgist and have some clue on how to advance this crack pot idea.

Another good talk was by Dr Jeff Coulton from UNSW Business School about an MBA elective he ran on costing resource projects. To make things a little more interesting, he gave the students a choice between three off-Earth mining projects; mining Ceres, mining the Moon or mining a near Earth orbit asteroid (NEO). The students were mostly from an IT or finance background, and so had little technical experience in terms of space science or engineering. They were told to assume the project was technically feasible, and to make assumptions on costs, resource values, demand etc. This simple experiment suggested that mining the boon had an initial capital expenditure of $9 billion (Au) and a net present value (NPV) of around $-450 billion. So you would lose $450 billion. Not very attractive. But – mining Ceres had a capex of around $22 billion and an NPV of around $80 billion, and mining an NEOhad a capex of just $492 million and an NPV of $295 million. Of course, these assume technical feasibility for these projects, which isn’t necessarily true at present, but what they demonstrate is a strong reliance of economics on the choice of discount rate and selling points.

I was pleasantly surprised to see a few talks on space law, but just plain surprised to see a presentation by an academic on space ethics. He opened his presentation with “As a humanities scholar I’m going to do something that annoys non-humanities scholars, and that is to read to you.” And he did just that. But I must say it was an enjoyable talk which got me thinking about a few things I hadn’t considered. For example, Dr Thom van Dooren focussed on the point that the economic, environmental, technical, scientific and cultural concerns related to space cannot be addressed individually, they are all entangled. Despite the low chances of humanity establishing a backup planet elsewhere, the implications for our survival and expansion are profound. One way to look at this is called ‘worlding’ – “What kind of world are we creating and what are the implications for whom?”

For example, mining helium-3 on the Moon might have obvious positive implications for some, but for others, damaging space environments may be seen as intrinsically wrong, and for others still it may be seen to be offending deities. How do we balance these concerns against others? Van Dooren argues that their concerns are not null.

Professor Steven Freeland began his presentation on space law with an amusing story. He was reading an article about space law in the Wall Street Journal. Oh great, he thinks, this will be interesting. Then he sees the title: “If a Martian crashes into your spacecraft, who is liable?” After a theatrical groan, he decides he can make a better summary of space law than the article.

Dr Alice Gorman gave a unique account of the importance of cultural heritage on the Moon and the implications of Moon dust, which, surprisingly, is actually a pretty big problem. Lunar dust is extremely sharp and abrasive due to the lack of erosional processes such as wind and flowing water. The grains can be highly electro-statically charged, and can levitate, especially when the terminator (sharp night/day boundary on the Moon) passes, due to the rapid change in temperature. Some particles are even assumed to reach lunar escape velocity speeds when human activity such as rover are in the vicinity. Imagine one of these dust grains hitting you at escape velocity!

Images of microscopic lunar dust. Image from commons.wikimedia.org.
Images of microscopic lunar dust. Image from commons.wikimedia.org.

Widespread mining of the lunar surface may even create an upper atmospheric dust layer, which could prevent aforementioned particles at escape velocity from actually leaving the surface. The implications of such a feature forming were left for us to imagine!

Apologies to any presentations that I missed, as they were all excellent talks. Leave a comment below or email me if you’d like to hear more about any of the talks, and I can go into more detail and discuss. A list of conference papers can be found via this link.

Tonight featured a presentation by Brian Muirhead of JPL, who is the manager of NASA’s Asteroid Redirect Mission (ARM). I’ll do a separate blog post about that as it’s a mission I’m really excited about, but for now I’d just like to share this very amusing and poignant image.

Yep.
Yep.

Maybe the dinosaurs would have survived if they had put more funding into their space program? Let’s not make the same mistake.

The Future Mining Conference finished up today, but the Off-Earth Mining Forum will continue tomorrow, featuring more talks from asteroid mining start ups and space scientists/engineers.

Until then.

Chaos theory and global warming – Future Mining Conference day 1

Double shot coffee in hand, I arrived at the AusIMM Future Mining Conference at 7:45 am to register and sign in. After a welcome from my supervisor Serkan Saydam the conference kicked of with a presentation from Nick Holland, CEO of Gold Fields about what the gold industry is likely to look like in the future. Apparently we are in store for a drop in gold production in 5-7 years due to a hiatus in exploration now which will begin to manifest itself, and we will see more automation, with Rio Tinto’s driverless trucks already saving ~500 work hours each per year.

One interesting presentation was titled ‘Integrating measurement, systems and leadership to build safe, productive cultures’ by Malcolm Roberts. The key messages were reducing variation in production to reduce waste and increase productivity (using the Taguchi loss function), and that safety and productivity need not be mutually exclusive in terms of budget. It’s not safety OR productivity, increased safety DRIVES productivity. Roberts ended with a rather provocative statement (which was only semi-related) that the ‘angry summer’ of 2012/2013 in Australia was only anomalous relative to the previous year, and showed the graph from this site (which I’ve never seen before).

Roberts suggested that all senior mining employees in Australia knew that global warming was fake, yet didn’t have the leadership to speak out about it. One of the audience members challenged this by asking whether the fact that the industry didn’t speak out about it was more due to the fact that it accepted the 97% consensus that anthropogenic global warming was real. Roberts replied by saying that the 97% consensus was false, and when you really look at the data only 0.3% of scientific papers on climate change support AGW. This was news to me. I’ve asked Roberts for comment and will write a follow-up piece on this.

Carlos Tapia Cortez, another PhD student of my supervisor gave a talk on ‘Copper price uncertainties – Chaos theory to manage risks in mining projects’. Put simply, Carlos put forward the hypothesis that copper prices can be forecast using chaos theory, fractals, artificial intelligence and econophysics, just as they have been used in neurosciences, meteorology, aviation and market trading. Overall the proof was a little beyond me, and I can’t say I was completely convinced that it works – but it was a proof of concept study. The next step is to actually simulate future copper prices and test how the analysis compares to reality, and to try it for different commodity prices. One might wonder if, were this analysis to work, would it cease to work almost straight away? If it became that easy to predict copper prices and thus buy low and sell high every time (arbitrage), people would stop selling and buying respectively at these times.

Until tomorrow.


Seeing Malcolm Roberts and Brian Cox in Q & A prompted me to finally finish this piece. In short, Malcolm Roberts claimed global warming was a hoax on national Australian television, and physicist Brian Cox debated him (or rather, showed Roberts some evidence which was rejected).

Shortly after writing this piece, I reached out to Roberts for clarification on his talk, and he gave me permission to reproduce our conversation here.

Michael

Hi Malcolm,

I enjoyed your presentation today at the AusIMM Future Mining Conference. That was certainly a provocative way to end a talk! If you don’t mind I had a few questions in hindsight.
Regarding your plot of temperature vs. time highlighting the ‘angry summer’, where is that sourced from? I haven’t seen that particular graph before.
Regarding the notion that the ‘97% consensus is actually 0.3%’, that seems exceptionally low. Given that I have met a lot of climate scientists and all of them have supported AGW, I’m a little surprised by this. Am I stuck in a bubble? Where are the 99.7%?
Kind regards,
Malcolm
Hi Michael.

Thank you for your email and inquiry.
Here’s a summary of the empirical evidence on climate:
It’s accessed through this page showing my formal complaints on behaviours of staff at the University of Queensland: http://www.climate.conscious.com.au/empiricaloh.html
Although not requested, both are pertinent to your questions.
Regarding the 97% being actually 0.3% it’s explained at the bottom of page 4, in Appendix 5, here: http://www.climate.conscious.com.au/CSIROh!.html
It’s discussed in my email correspondence with UQ Vice Chancellor here: http://www.climate.conscious.com.au/docs/Email20July2015.pdf
John Cook’s behaviour in fabricating the 97% consensus forms part of my formal complaints. Those complaints and my correspondence with the VC cite a scientifically peer-reviewed paper that demolishes Cook’s fabrication. It’s the source of my figures in Appendix 5, above.
Similar fates have befallen other claims of 97% consensus. These have been comprehensively explained elsewhere.
Note that none of Cook’s 0.3% have provided any empirical evidence of human causation of global warming or climate change.
Note further that anyone claiming a consensus is undermining science since the decider of science is empirical data, not voting.
Secondly, the graph of summertime tropospheric temperatures is available at Jo Nova’s site and was sourced in data from the providers of the NASA satellite data, University of Alabama at Huntsville, Alabama: http://joannenova.com.au/2013/03/hottest-summer-record-in-australia-not-even-close-says-uah-satellite-data/
Journalists with limited understanding of science accessed basic data to disprove the Gillard-Flannery Climate Commission’s claim.
I chose that graph because it illustrates the lack of any process change in Australian summertime temperatures. There are many graphs of annual temperatures confirming no change in temperatures.
There are no graphs and no data showing process change in global climate or any climate factors.
I say this, Michael, not to embarrass you. That the majority of people were misled is not their fault. There has been a barrage of misleading and evocative material flung at the public by a small group of people portrayed as authoritative with that material re-presented by a large group of well-meaning though misinformed people. We humans are easily misled, especially when emotions are deliberately involved.
When you visit Appendix 5, enroute perhaps peruse the documentation of extensive corruption of climate science in appendices 3, 5, 6, 6a, 7, 8, 9, 10, 11, 12, 13, 13a-13g, 14, 15.
Then consider whether or not you’ve ever actually seen specific empirical evidence and logical causal analysis of climate proving that carbon dioxide from human activity causes global warming or global climate change or global climate variability.
There is none. Neither BOM nor CSIRO Chief Executive has ever provided any to MPs as my Freedom of Information requests confirm.
None of the nine most prominent Australian academics fomenting climate alarm has ever provided any in their responses to my requests.
It’s summarised on page 2 of my letter to 19 March 2014 letter to Greg Hunt: http://www.climate.conscious.com.au/docs/letters/20140321/GregHunt,March2014.pdf
The ultimate arbiter of science is empirical evidence.
I hope this answers your questions fully and meets your needs.
Regards,
Michael
Hi Malcolm, thanks for your detailed response.

I’m not embarrassed – I don’t believe I told you my personal stance on climate science.

I write a blog covering fields related to my research, and wrote several summaries on the Future Mining Conference. I was asked by several readers to expand upon your presentation, especially the content relevant to climate science. Would you be comfortable if I referred to some of the content of your response? If not, I will make no mention of it.

Regards,
Malcolm

Thank you, Michael.

Please accept my regret for the sloppiness of my wording. I didn’t mean to imply that you specifically should not be embarrassed and I had not meant to imply any assumption regarding your stance.
It was my clumsy attempt to empathise with a possible believer in human causation while simultaneously conveying to a possible sceptic to extend understanding to those who have fallen for climate claims. Please note my use of the word ’their’ in reference to people who may have fallen for climate claims.
Secondly, I try to live life openly and would be delighted for you to use any of my material and any of my response in context. Thank you for the courtesy of asking.
If you cite The Australian’s article, please do so on the basis that I am not using it as scientific proof, and am using it only to show that even two journalists with apparently limited scientific background (if any) were able to easily debunk the government’s ‘experts’ who had implied the 2013 summer was unusually hot when it was not.
Regards,
In summary, while I was deliberately ambiguous in these emails, after examining the evidence myself (having studied climate change at university in my undergraduate degree – see also my analysis of common myths around anthropogenic global warming) I am of no doubt that global warming is significantly more likely than not to be real, to be caused by humans, and to be a big problem. And quite frankly, even if we were only 0.3% sure that this was the case, I would still advocate for doing something about it. After all, there is a chance it lead to the extinction of humanity, which would be very bad indeed. How much risk are we willing to accept when it comes to our literal extinction?
https://www.skepticalscience.com/argument.php
http://futureoflife.org/environment/